TY - BOOK AU - Holmes,Dawn E. AU - Jain,Lakhmi C. ED - SpringerLink (Online service) TI - Innovations in Bayesian Networks: Theory and Applications T2 - Studies in Computational Intelligence, SN - 9783540850663 AV - TA329-348 U1 - 519 23 PY - 2008/// CY - Berlin, Heidelberg PB - Springer Berlin Heidelberg KW - Engineering KW - Artificial intelligence KW - Engineering mathematics KW - Appl.Mathematics/Computational Methods of Engineering KW - Artificial Intelligence (incl. Robotics) N1 - to Bayesian Networks -- A Polemic for Bayesian Statistics -- A Tutorial on Learning with Bayesian Networks -- The Causal Interpretation of Bayesian Networks -- An Introduction to Bayesian Networks and Their Contemporary Applications -- Objective Bayesian Nets for Systems Modelling and Prognosis in Breast Cancer -- Modeling the Temporal Trend of the Daily Severity of an Outbreak Using Bayesian Networks -- An Information-Geometric Approach to Learning Bayesian Network Topologies from Data -- Causal Graphical Models with Latent Variables: Learning and Inference -- Use of Explanation Trees to Describe the State Space of a Probabilistic-Based Abduction Problem -- Toward a Generalized Bayesian Network -- A Survey of First-Order Probabilistic Models N2 - Bayesian networks currently provide one of the most rapidly growing areas of research in computer science and statistics. In compiling this volume we have brought together contributions from some of the most prestigious researchers in this field. Each of the twelve chapters is self-contained. Both theoreticians and application scientists/engineers in the broad area of artificial intelligence will find this volume valuable. It also provides a useful sourcebook for Graduate students since it shows the direction of current research UR - http://dx.doi.org/10.1007/978-3-540-85066-3 ER -