Analysis of Decision Support Systems of Industrial Relevance: Application Potential of Fuzzy and Grey Set Theories

By: Sen, Dilip KumarContributor(s): Datta , Saurav [Supervisor] | Patel, Saroj Kumar [Supervisor] | Department of Mechanical EngineeringMaterial type: TextTextLanguage: English Publisher: 2017Description: 369 pSubject(s): Engineering and Technology | Mechanical Engineering | RoboticsOnline resources: Click here to access online Dissertation note: Thesis Ph.D National Institute of Technology, Rourkela Summary: The present work articulates few case empirical studies on decision making in industrial context. Development of variety of Decision Support System (DSS) under uncertainty and vague information is attempted herein. The study emphases on five important decision making domains where effective decision making may surely enhance overall performance of the organization. The focused territories of this work are i) robot selection, ii) g-resilient supplier selection, iii) third party logistics (3PL) service provider selection, iv) assessment of supply chain’s g-resilient index and v) risk assessment in e-commerce exercises. Firstly, decision support systems in relation to robot selection are conceptualized through adaptation to fuzzy set theory in integration with TODIM and PROMETHEE approach, Grey set theory is also found useful in this regard; and is combined with TODIM approach to identify the best robot alternative. In this work, an attempt is also made to tackle subjective (qualitative) and objective (quantitative) evaluation information simultaneously, towards effective decision making. Supplier selection is a key strategic concern for the large-scale organizations. In view of this, a novel decision support framework is proposed to address g-resilient (green and resilient) supplier selection issues. Green capability of suppliers’ ensures the pollution free operation; while, resiliency deals with unexpected system disruptions. A comparative analysis of the results is also carried out by applying well-known decision making approaches like Fuzzy- TOPSIS and Fuzzy-VIKOR. In relation to 3PL service provider selection, this dissertation proposes a novel ‘Dominance- Based’ model in combination with grey set theory to deal with 3PL provider selection, considering linguistic preferences of the Decision-Makers (DMs). An empirical case study is articulated to demonstrate application potential of the proposed model. The results, obtained thereof, have been compared to that of grey-TOPSIS approach. Another part of this dissertation is to provide an integrated framework in order to assess gresilient (ecosilient) performance of the supply chain of a case automotive company. The overall g-resilient supply chain performance is determined by computing a unique ecosilient (g-resilient) index. The concepts of Fuzzy Performance Importance Index (FPII) along with Degree of Similarity (DOS) (obtained from fuzzy set theory) are applied to rank different gresilient criteria in accordance to their current status of performance. The study is further extended to analyze, and thereby, to mitigate various risk factors (risk sources) involved in e-commerce exercises. A total forty eight major e-commerce risks are recognized and evaluated in a decision making perspective by utilizing the knowledge acquired from the fuzzy set theory. Risk is evaluated as a product of two risk quantifying parameters viz. (i) Likelihood of occurrence and, (ii) Impact. Aforesaid two risk quantifying parameters are assessed in a subjective manner (linguistic human judgment), rather than exploring probabilistic approach of risk analysis. The ‘crisp risk extent’ corresponding to various risk factors are figured out through the proposed fuzzy risk analysis approach. The risk factor possessing high ‘crisp risk extent’ score is said be more critical for the current problem context (toward e-commerce success). Risks are now categorized into different levels of severity (adverse consequences) (i.e. negligible, minor, marginal, critical and catastrophic). Amongst forty eight risk sources, top five risk sources which are supposed to adversely affect the company’s e-commerce performance are recognized through such categorization. The overall risk extent is determined by aggregating individual risks (under ‘critical’ level of severity) using Fuzzy Inference System (FIS). Interpretive Structural Modeling (ISM) is then used to obtain structural relationship amongst aforementioned five risk sources. Anappropriate action requirement plan is also suggested, to control and minimize risks associatedwith e-commerce exercises.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode
Thesis (Ph.D/M.Tech R) Thesis (Ph.D/M.Tech R) BP Central Library
Thesis Section
Reference Not for loan T672

Thesis Ph.D National Institute of Technology, Rourkela

The present work articulates few case empirical studies on decision making in industrial
context. Development of variety of Decision Support System (DSS) under uncertainty and
vague information is attempted herein. The study emphases on five important decision making
domains where effective decision making may surely enhance overall performance of the
organization. The focused territories of this work are i) robot selection, ii) g-resilient supplier
selection, iii) third party logistics (3PL) service provider selection, iv) assessment of supply
chain’s g-resilient index and v) risk assessment in e-commerce exercises.
Firstly, decision support systems in relation to robot selection are conceptualized through
adaptation to fuzzy set theory in integration with TODIM and PROMETHEE approach, Grey
set theory is also found useful in this regard; and is combined with TODIM approach to
identify the best robot alternative. In this work, an attempt is also made to tackle subjective
(qualitative) and objective (quantitative) evaluation information simultaneously, towards
effective decision making.
Supplier selection is a key strategic concern for the large-scale organizations. In view of this, a
novel decision support framework is proposed to address g-resilient (green and resilient)
supplier selection issues. Green capability of suppliers’ ensures the pollution free operation;
while, resiliency deals with unexpected system disruptions. A comparative analysis of the
results is also carried out by applying well-known decision making approaches like Fuzzy-
TOPSIS and Fuzzy-VIKOR.
In relation to 3PL service provider selection, this dissertation proposes a novel ‘Dominance-
Based’ model in combination with grey set theory to deal with 3PL provider selection,
considering linguistic preferences of the Decision-Makers (DMs). An empirical case study is
articulated to demonstrate application potential of the proposed model. The results, obtained
thereof, have been compared to that of grey-TOPSIS approach.
Another part of this dissertation is to provide an integrated framework in order to assess gresilient
(ecosilient) performance of the supply chain of a case automotive company. The
overall g-resilient supply chain performance is determined by computing a unique ecosilient
(g-resilient) index. The concepts of Fuzzy Performance Importance Index (FPII) along with
Degree of Similarity (DOS) (obtained from fuzzy set theory) are applied to rank different gresilient
criteria in accordance to their current status of performance.
The study is further extended to analyze, and thereby, to mitigate various risk factors (risk
sources) involved in e-commerce exercises. A total forty eight major e-commerce risks are
recognized and evaluated in a decision making perspective by utilizing the knowledge
acquired from the fuzzy set theory. Risk is evaluated as a product of two risk quantifying
parameters viz. (i) Likelihood of occurrence and, (ii) Impact. Aforesaid two risk quantifying
parameters are assessed in a subjective manner (linguistic human judgment), rather than
exploring probabilistic approach of risk analysis. The ‘crisp risk extent’ corresponding to
various risk factors are figured out through the proposed fuzzy risk analysis approach. The risk
factor possessing high ‘crisp risk extent’ score is said be more critical for the current problem
context (toward e-commerce success). Risks are now categorized into different levels of
severity (adverse consequences) (i.e. negligible, minor, marginal, critical and catastrophic).
Amongst forty eight risk sources, top five risk sources which are supposed to adversely affect
the company’s e-commerce performance are recognized through such categorization. The
overall risk extent is determined by aggregating individual risks (under ‘critical’ level of
severity) using Fuzzy Inference System (FIS). Interpretive Structural Modeling (ISM) is then
used to obtain structural relationship amongst aforementioned five risk sources. Anappropriate action requirement plan is also suggested, to control and minimize risks associatedwith
e-commerce exercises.

There are no comments on this title.

to post a comment.

Implemented and Maintained by Biju Patnaik Central Library.
For any Suggestions/Query Contact to library or Email: library@nitrkl.ac.in OR bpcl-cir@nitrkl.ac.in. Ph:91+6612462103
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha