Performance Enhancement of Shunt APFs Using Various Topologies, Control Schemes and Optimization Techniques

By: Patnaik, Sushree SangitaContributor(s): Panda, Anup Kumar [Supervisor] | Department of Electrical EngineeringMaterial type: TextTextLanguage: English Publisher: 2015Description: 226 pSubject(s): Engineering and Technology | Electrical Engineering | Power Systems | Power TransformersOnline resources: Click here to access online Dissertation note: Thesis (Ph.D) National Institute of Technology, Rourkela Summary: Following the advent of solid-state power electronics technology, extensive usage of nonlinear loads has lead to severe disturbances like harmonics, unbalanced currents, excessive neutral current and reactive power burden in three-phase power systems. Harmonics lower down the efficiency and power factor, increase losses, and result in electromagnetic interference with neighbouring communication lines and other harmful consequences. Over the years, active power filter (APF) has been proven to be a brilliant solution among researchers and application engineers dealing with power quality issues. Selection of proper reference compensation current extraction scheme plays the most crucial role in APF performance. This thesis describes three time-domain schemes viz. Instantaneous active and reactive power (p-q), modified p-q, and Instantaneous active and reactive current component (i_d-i_q) schemes. The objective is to bring down the source current THD below 5%, to satisfy the IEEE-519 Standard recommendations on harmonic limits. Comparative evaluation shows that, i_d-i_q is the best APF control scheme irrespective of supply and load conditions. Results are validated with simulations, followed by real-time analysis in RT-Lab.In view of the fact that APFs are generally comprised of voltage source inverter (VSI) based on PWM, undesirable power loss takes place inside it due to the inductors and switching devices. This is effectively minimized with inverter DC-link voltage regulation using PI controller. The controller gains are determined using optimization technique, as the conventional linearized tuning of PI controller yield inadequate results for a range of operating conditions due to the complex, nonlinear and time-varying nature of power system networks. Developed by hybridization of Particle swarm optimization (PSO) and Bacterial foraging optimization (BFO), an Enhanced BFO technique is proposed here so as to overcome the drawbacks of both PSO and BFO, and accelerate the convergence of optimization problem. Extensive simulation studies and RT-Lab real-time investigations are performed for comparative assessment of proposed implementation of PSO, BFO and Enhanced BFO on APF. This validates that, the APF employing Enhanced BFO offers superior harmonic compensation compared to other alternatives, by lowering down the source current THD to drastically small values.Another indispensable aspect of APF is its topology, which plays an essential role in meeting harmonic current requirement of nonlinear loads. APFs are generally developed with current-source or voltage-source inverters. The latter is more convenient as it is lighter, cheaper, and expandable to multilevel and multistep versions for improved performance at high power ratings with lower switching frequencies. There can be different topologies of VSI depending on the type of supply system. With each topology, constraints related to DC-link voltage regulation change. For effective compensation, irrespective of the number and rating of DC-link capacitors used in any particular topology, voltages across them must be maintained constant with optimal regulation of DC-link voltage. Various topologies for three-phase three-wire systems (conventional two-level and multilevel VSIs) and four-wire systems (split-capacitor (2C), four-leg (4L), three H-bridges (3HB) and three-level H-bridge (3L-HB) VSIs) are analyzed and compared based on component requirements, effectiveness in harmonic compensation, cost and area of application.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode
Thesis (Ph.D/M.Tech R) Thesis (Ph.D/M.Tech R) BP Central Library
Thesis Section
Reference Not for loan T427

Thesis (Ph.D) National Institute of Technology, Rourkela

Following the advent of solid-state power electronics technology, extensive usage of nonlinear loads has lead to severe disturbances like harmonics, unbalanced currents, excessive neutral current and reactive power burden in three-phase power systems. Harmonics lower down the efficiency and power factor, increase losses, and result in electromagnetic interference with neighbouring communication lines and other harmful consequences. Over the years, active power filter (APF) has been proven to be a brilliant solution among researchers and application engineers dealing with power quality issues. Selection of proper reference compensation current extraction scheme plays the most crucial role in APF performance. This thesis describes three time-domain schemes viz. Instantaneous active and reactive power (p-q), modified p-q, and Instantaneous active and reactive current component (i_d-i_q) schemes. The objective is to bring down the source current THD below 5%, to satisfy the IEEE-519 Standard recommendations on harmonic limits. Comparative evaluation shows that, i_d-i_q is the best APF control scheme irrespective of supply and load conditions. Results are validated with simulations, followed by real-time analysis in RT-Lab.In view of the fact that APFs are generally comprised of voltage source inverter (VSI) based on PWM, undesirable power loss takes place inside it due to the inductors and switching devices. This is effectively minimized with inverter DC-link voltage regulation using PI controller. The controller gains are determined using optimization technique, as the conventional linearized tuning of PI controller yield inadequate results for a range of operating conditions due to the complex, nonlinear and time-varying nature of power system networks. Developed by hybridization of Particle swarm optimization (PSO) and Bacterial foraging optimization (BFO), an Enhanced BFO technique is proposed here so as to overcome the drawbacks of both PSO and BFO, and accelerate the convergence of optimization problem. Extensive simulation studies and RT-Lab real-time investigations are performed for comparative assessment of proposed implementation of PSO, BFO and Enhanced BFO on APF. This validates that, the APF employing Enhanced BFO offers superior harmonic compensation compared to other alternatives, by lowering down the source current THD to drastically small values.Another indispensable aspect of APF is its topology, which plays an essential role in meeting harmonic current requirement of nonlinear loads. APFs are generally developed with current-source or voltage-source inverters. The latter is more convenient as it is lighter, cheaper, and expandable to multilevel and multistep versions for improved performance at high power ratings with lower switching frequencies. There can be different topologies of VSI depending on the type of supply system. With each topology, constraints related to DC-link voltage regulation change. For effective compensation, irrespective of the number and rating of DC-link capacitors used in any particular topology, voltages across them must be maintained constant with optimal regulation of DC-link voltage. Various topologies for three-phase three-wire systems (conventional two-level and multilevel VSIs) and four-wire systems (split-capacitor (2C), four-leg (4L), three H-bridges (3HB) and three-level H-bridge (3L-HB) VSIs) are analyzed and compared based on component requirements, effectiveness in harmonic compensation, cost and area of application.

There are no comments on this title.

to post a comment.

Implemented and Maintained by Biju Patnaik Central Library.
For any Suggestions/Query Contact to library or Email: library@nitrkl.ac.in OR bpcl-cir@nitrkl.ac.in. Ph:91+6612462103
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha