Preparation and Characterization of Polymer Matrix Composite using Natural Fiber Lantana-Camara

By: Deo, Chitta RanjanContributor(s): Acharya, Samir Kumar [Supervisor] | Department of Mechanical EngineeringMaterial type: TextTextLanguage: English Publisher: 2010Description: 280 pSubject(s): Engineering and Technology | Mechanical Engineering | Production EngineeringOnline resources: Click here to access online Dissertation note: Thesis (Ph.D)- National Institute of Technology, Rourkela Summary: Environmental awareness today motivates the researchers, worldwide on the studies of natural fiber reinforced polymer composite and cost effective option to synthetic fiber reinforced composites. The availability of natural fibers and ease of manufacturing have tempted researchers to try locally available inexpensive fibers and to study their feasibility of reinforcement purposes and to what extent they satisfy the required specifications of good reinforced polymer composite for different applications. With low cost and high specific mechanical properties, natural fiber represents a good renewable and biodegradable alternative to the most common synthetic reinforcement, i.e. glass fiber. Despite the interest and environmental appeal of natural fibers, there use is limited to non-bearing applications, due to their lower strength compared with synthetic fiber reinforced polymer composite. The stiffness and strength shortcomings of biocomposites can be overcome by structural configurations and better arrangement in a sense of placing the fibers in specific locations for highest strength performance. Accordingly extensive studies on preparation and properties of polymer matrix composite (PMC) replacing the synthetic fiber with natural fiber like Jute, Sisal, Pineapple, Bamboo, Kenaf and Bagasse were carried out. These plant fibers have many advantages over glass fiber or carbon fiber like renewable, environmental friendly, low cost, lightweight and high specific mechanical performance.Environmental awareness today motivates the researchers, worldwide on the studies of natural fiber reinforced polymer composite and cost effective option to synthetic fiber reinforced composites. The availability of natural fibers and ease of manufacturing have tempted researchers to try locally available inexpensive fibers and to study their feasibility of reinforcement purposes and to what extent they satisfy the required specifications of good reinforced polymer composite for different applications. With low cost and high specific mechanical properties, natural fiber represents a good renewable and biodegradable alternative to the most common synthetic reinforcement, i.e. glass fiber. Despite the interest and environmental appeal of natural fibers, there use is limited to non-bearing applications, due to their lower strength compared with synthetic fiber reinforced polymer composite. The stiffness and strength shortcomings of biocomposites can be overcome by structural configurations and better arrangement in a sense of placing the fibers in specific locations for highest strength performance. Accordingly extensive studies on preparation and properties of polymer matrix composite (PMC) replacing the synthetic fiber with natural fiber like Jute, Sisal, Pineapple, Bamboo, Kenaf and Bagasse were carried out. These plant fibers have many advantages over glass fiber or carbon fiber like renewable, environmental friendly, low cost, lightweight and high specific mechanical performance.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode
Thesis (Ph.D/M.Tech R) Thesis (Ph.D/M.Tech R) BP Central Library
Thesis Section
Reference Not for loan T87

Thesis (Ph.D)- National Institute of Technology, Rourkela

Environmental awareness today motivates the researchers, worldwide on the studies of natural fiber reinforced polymer composite and cost effective option to synthetic fiber reinforced composites. The availability of natural fibers and ease of manufacturing have tempted researchers to try locally available inexpensive fibers and to study their feasibility of reinforcement purposes and to what extent they satisfy the required specifications of good reinforced polymer composite for different applications. With low cost and high specific mechanical properties, natural fiber represents a good renewable and biodegradable alternative to the most common synthetic reinforcement, i.e. glass fiber. Despite the interest and environmental appeal of natural fibers, there use is limited to non-bearing applications, due to their lower strength compared with synthetic fiber reinforced polymer composite. The stiffness and strength shortcomings of biocomposites can be overcome by structural configurations and better arrangement in a sense of placing the fibers in specific locations for highest strength performance. Accordingly extensive studies on preparation and properties of polymer matrix composite (PMC) replacing the synthetic fiber with natural fiber like Jute, Sisal, Pineapple, Bamboo, Kenaf and Bagasse were carried out. These plant fibers have many advantages over glass fiber or carbon fiber like renewable, environmental friendly, low cost, lightweight and high specific mechanical performance.Environmental awareness today motivates the researchers, worldwide on the studies
of natural fiber reinforced polymer composite and cost effective option to synthetic fiber reinforced composites. The availability of natural fibers and ease of manufacturing have tempted researchers to try locally available inexpensive fibers and to study their feasibility of reinforcement purposes and to what extent they satisfy the required specifications of good reinforced polymer composite for different applications. With low cost and high specific mechanical properties, natural fiber represents a good renewable and biodegradable alternative to the most common synthetic reinforcement, i.e. glass fiber. Despite the interest and environmental appeal of natural fibers, there use is limited to non-bearing applications, due to their lower strength compared with synthetic fiber reinforced polymer composite. The stiffness and strength shortcomings of biocomposites can be overcome by structural configurations and better arrangement in a sense of placing the fibers in specific locations for highest strength performance. Accordingly extensive studies on preparation and properties of polymer matrix composite (PMC) replacing the synthetic fiber with natural fiber like Jute, Sisal, Pineapple, Bamboo, Kenaf and Bagasse were carried out. These plant fibers have many advantages over glass fiber or carbon fiber like renewable, environmental friendly, low cost, lightweight and high specific mechanical performance.

There are no comments on this title.

to post a comment.

Implemented and Maintained by Biju Patnaik Central Library.
For any Suggestions/Query Contact to library or Email: library@nitrkl.ac.in OR bpcl-cir@nitrkl.ac.in. Ph:91+6612462103
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha