Radial Basis Function (RBF) Neural Network Control for Mechanical Systems [electronic resource] : Design, Analysis and Matlab Simulation / by Jinkun Liu.

By: Liu, Jinkun [author.]Contributor(s): SpringerLink (Online service)Material type: TextTextLanguage: English Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013Description: XV, 365 p. 170 illus., 2 illus. in color. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783642348167Subject(s): Engineering | Vibration | Engineering | Control | Vibration, Dynamical Systems, Control | Computational Intelligence | Mathematical Models of Cognitive Processes and Neural NetworksAdditional physical formats: Printed edition:: No titleDDC classification: 629.8 LOC classification: TJ212-225Online resources: Click here to access online
Contents:
Introduction -- RBF Neural Network Design and Simulation -- RBF Neural Network Control Based on Gradient Descent Algorithm -- Adaptive RBF Neural Network Control -- Neural Network Sliding Mode Control -- Adaptive RBF Control Based on Global Approximation -- Adaptive Robust RBF Control Based on Local Approximation -- Backstepping Control with RBF -- Digital RBF Neural Network Control -- Discrete Neural Network Control -- Adaptive RBF Observer Design and Sliding Mode Control.
In: Springer eBooksSummary: Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design.   This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronautics.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
No physical items for this record

Introduction -- RBF Neural Network Design and Simulation -- RBF Neural Network Control Based on Gradient Descent Algorithm -- Adaptive RBF Neural Network Control -- Neural Network Sliding Mode Control -- Adaptive RBF Control Based on Global Approximation -- Adaptive Robust RBF Control Based on Local Approximation -- Backstepping Control with RBF -- Digital RBF Neural Network Control -- Discrete Neural Network Control -- Adaptive RBF Observer Design and Sliding Mode Control.

Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design.   This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronautics.

There are no comments on this title.

to post a comment.

Implemented and Maintained by Biju Patnaik Central Library.
For any Suggestions/Query Contact to library or Email: library@nitrkl.ac.in OR bpcl-cir@nitrkl.ac.in. Ph:91+6612462103
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha