Intelligent Systems: Approximation by Artificial Neural Networks [electronic resource] / by George A. Anastassiou.

By: Anastassiou, George A [author.]Contributor(s): SpringerLink (Online service)Material type: TextTextLanguage: English Series: Intelligent Systems Reference Library: 19Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011Description: VIII, 108 p. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783642214318Subject(s): Engineering | Artificial intelligence | Mathematics | Engineering | Computational Intelligence | Artificial Intelligence (incl. Robotics) | Applications of MathematicsAdditional physical formats: Printed edition:: No titleDDC classification: 006.3 LOC classification: Q342Online resources: Click here to access online
Contents:
Univariate sigmoidal neural network quantitative approximation -- Univariate hyperbolic tangent neural network quantitative approximation -- Multivariate sigmoidal neural network quantitative approximation -- Multivariate hyperbolic tangent neural network quantitative approximation.
In: Springer eBooksSummary: This brief monograph is the first one to deal exclusively with the quantitative approximation by artificial neural networks to the identity-unit operator. Here we study with rates the approximation properties of the "right" sigmoidal and hyperbolic tangent artificial neural network positive linear operators. In particular we study the degree of approximation of these operators to the unit operator in the univariate and multivariate cases over bounded or unbounded domains. This is given via inequalities and with the use of modulus of continuity of the involved function or its higher order derivative. We examine the real and complex cases.  For the convenience of the reader, the chapters of this book are written in a self-contained style. This treatise relies on author's last two years of related research work. Advanced courses and seminars can be taught out of this brief book. All necessary background and motivations are given per chapter. A related list of references is given also per chapter. The exposed results are expected to find applications in many areas of computer science and applied mathematics, such as neural networks, intelligent systems, complexity theory, learning theory, vision and approximation theory, etc. As such this monograph is suitable for researchers, graduate students, and seminars of the above subjects, also for all science libraries.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
No physical items for this record

Univariate sigmoidal neural network quantitative approximation -- Univariate hyperbolic tangent neural network quantitative approximation -- Multivariate sigmoidal neural network quantitative approximation -- Multivariate hyperbolic tangent neural network quantitative approximation.

This brief monograph is the first one to deal exclusively with the quantitative approximation by artificial neural networks to the identity-unit operator. Here we study with rates the approximation properties of the "right" sigmoidal and hyperbolic tangent artificial neural network positive linear operators. In particular we study the degree of approximation of these operators to the unit operator in the univariate and multivariate cases over bounded or unbounded domains. This is given via inequalities and with the use of modulus of continuity of the involved function or its higher order derivative. We examine the real and complex cases.  For the convenience of the reader, the chapters of this book are written in a self-contained style. This treatise relies on author's last two years of related research work. Advanced courses and seminars can be taught out of this brief book. All necessary background and motivations are given per chapter. A related list of references is given also per chapter. The exposed results are expected to find applications in many areas of computer science and applied mathematics, such as neural networks, intelligent systems, complexity theory, learning theory, vision and approximation theory, etc. As such this monograph is suitable for researchers, graduate students, and seminars of the above subjects, also for all science libraries.

There are no comments on this title.

to post a comment.

Implemented and Maintained by Biju Patnaik Central Library.
For any Suggestions/Query Contact to library or Email: library@nitrkl.ac.in OR bpcl-cir@nitrkl.ac.in. Ph:91+6612462103
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha