Hybrid Random Fields [electronic resource] : A Scalable Approach to Structure and Parameter Learning in Probabilistic Graphical Models / by Antonino Freno, Edmondo Trentin.

By: Freno, Antonino [author.]Contributor(s): Trentin, Edmondo [author.] | SpringerLink (Online service)Material type: TextTextLanguage: English Series: Intelligent Systems Reference Library: 15Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011Description: XVIII, 210 p. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783642203084Subject(s): Engineering | Artificial intelligence | Engineering | Computational Intelligence | Artificial Intelligence (incl. Robotics)Additional physical formats: Printed edition:: No titleDDC classification: 006.3 LOC classification: Q342Online resources: Click here to access online
Contents:
Introduction -- Bayesian Networks -- Markov Random Fields -- Introducing Hybrid Random Fields: Discrete-Valued Variables -- Extending Hybrid Random Fields: Continuous-Valued Variables -- Applications -- Probabilistic Graphical Models: Cognitive Science or Cognitive Technology? . -- Conclusions.
In: Springer eBooksSummary: This book presents an exciting new synthesis of directed and undirected, discrete and continuous graphical models. Combining elements of Bayesian networks and Markov random fields, the newly introduced hybrid random fields are an interesting approach to get the best of both these worlds, with an added promise of modularity and scalability. The authors have written an enjoyable book---rigorous in the treatment of the mathematical background, but also enlivened by interesting and original historical and philosophical perspectives. -- Manfred Jaeger, Aalborg Universitet The book not only marks an effective direction of investigation with significant experimental advances, but it is also---and perhaps primarily---a guide for the reader through an original trip in the space of probabilistic modeling. While digesting the book, one is enriched with a very open view of the field, with full of stimulating connections. [...] Everyone specifically interested in Bayesian networks and Markov random fields should not miss it. -- Marco Gori, Università degli Studi di Siena Graphical models are sometimes regarded---incorrectly---as an impractical approach to machine learning, assuming that they only work well for low-dimensional applications and discrete-valued domains. While guiding the reader through the major achievements of this research area in a technically detailed yet accessible way, the book is concerned with the presentation and thorough (mathematical and experimental) investigation of a novel paradigm for probabilistic graphical modeling, the hybrid random field. This model subsumes and extends both Bayesian networks and Markov random fields. Moreover, it comes with well-defined learning algorithms, both for discrete and continuous-valued domains, which fit the needs of real-world applications involving large-scale, high-dimensional data.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
No physical items for this record

Introduction -- Bayesian Networks -- Markov Random Fields -- Introducing Hybrid Random Fields: Discrete-Valued Variables -- Extending Hybrid Random Fields: Continuous-Valued Variables -- Applications -- Probabilistic Graphical Models: Cognitive Science or Cognitive Technology? . -- Conclusions.

This book presents an exciting new synthesis of directed and undirected, discrete and continuous graphical models. Combining elements of Bayesian networks and Markov random fields, the newly introduced hybrid random fields are an interesting approach to get the best of both these worlds, with an added promise of modularity and scalability. The authors have written an enjoyable book---rigorous in the treatment of the mathematical background, but also enlivened by interesting and original historical and philosophical perspectives. -- Manfred Jaeger, Aalborg Universitet The book not only marks an effective direction of investigation with significant experimental advances, but it is also---and perhaps primarily---a guide for the reader through an original trip in the space of probabilistic modeling. While digesting the book, one is enriched with a very open view of the field, with full of stimulating connections. [...] Everyone specifically interested in Bayesian networks and Markov random fields should not miss it. -- Marco Gori, Università degli Studi di Siena Graphical models are sometimes regarded---incorrectly---as an impractical approach to machine learning, assuming that they only work well for low-dimensional applications and discrete-valued domains. While guiding the reader through the major achievements of this research area in a technically detailed yet accessible way, the book is concerned with the presentation and thorough (mathematical and experimental) investigation of a novel paradigm for probabilistic graphical modeling, the hybrid random field. This model subsumes and extends both Bayesian networks and Markov random fields. Moreover, it comes with well-defined learning algorithms, both for discrete and continuous-valued domains, which fit the needs of real-world applications involving large-scale, high-dimensional data.

There are no comments on this title.

to post a comment.

Implemented and Maintained by Biju Patnaik Central Library.
For any Suggestions/Query Contact to library or Email: library@nitrkl.ac.in OR bpcl-cir@nitrkl.ac.in. Ph:91+6612462103
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha