Membranes and cell signaling [electronic resource] / edited by E. Edward Bittar, Neville Bittar.

Contributor(s): Bittar, E. Edward | Bittar, NevilleMaterial type: TextTextSeries: Principles of medical biology: v. 7A-7B.Publisher: Greenwich, Conn. : JAI Press, c1997Description: 1 online resource (2 v. (xviii, 637 p.)) : illISBN: 9781559388122; 1559388129Subject(s): Cell membranes | Cellular signal transduction | Cell Membrane -- physiology | Signal Transduction -- physiology | Biological Transport -- physiologyGenre/Form: Electronic books.Additional physical formats: Print version:: Membranes and cell signaling.DDC classification: 611/.0181 LOC classification: QH601 | .M4812 1997ebOnline resources: ScienceDirect Summary: It should not come as too much of a surprise that biological membranes are considerably more complex than lipid bilayers. This has been made quite clear by the fluid-mosaic model which considers the cell membrane as a two-dimensional solution of a mosaic of integral membrane proteins and glycoproteins firmly embedded in a fluid lipid bilayer matrix. Such a model has several virtues, chief among which is that it allows membrane components to diffuse in the plane of the membrane and orient asymmetrically across the membrane. The model is also remarkable since it provokes the right sort of questions. Two such examples are: Does membrane fluidity influence enzyme activity? Does cholesterol regulate fluidity? However, it does not go far enough. As it turns out, there is now another version of this model, the so-called post-fluid mosaic model which incorporates two concepts, namely the existence in the membrane of discrete domains in which specific lipid-lipid, lipid-protein and protein-protein interactions occur and ordered regions that are in motion but remain separate from less ordered regions. We must admit that both are intriguing problems and of importance in guiding our thinking as to what the next model might be. We have chosen not to include the subject of membrane transport in the present volume. This obviously represents a break with convention. However, the intention is to have the topic covered subsequent volumes relating to organ systems. It would be right to regard this as an attempt to strengthen the integrated approach to the teaching of medicine.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
No physical items for this record

It should not come as too much of a surprise that biological membranes are considerably more complex than lipid bilayers. This has been made quite clear by the fluid-mosaic model which considers the cell membrane as a two-dimensional solution of a mosaic of integral membrane proteins and glycoproteins firmly embedded in a fluid lipid bilayer matrix. Such a model has several virtues, chief among which is that it allows membrane components to diffuse in the plane of the membrane and orient asymmetrically across the membrane. The model is also remarkable since it provokes the right sort of questions. Two such examples are: Does membrane fluidity influence enzyme activity? Does cholesterol regulate fluidity? However, it does not go far enough. As it turns out, there is now another version of this model, the so-called post-fluid mosaic model which incorporates two concepts, namely the existence in the membrane of discrete domains in which specific lipid-lipid, lipid-protein and protein-protein interactions occur and ordered regions that are in motion but remain separate from less ordered regions. We must admit that both are intriguing problems and of importance in guiding our thinking as to what the next model might be. We have chosen not to include the subject of membrane transport in the present volume. This obviously represents a break with convention. However, the intention is to have the topic covered subsequent volumes relating to organ systems. It would be right to regard this as an attempt to strengthen the integrated approach to the teaching of medicine.

Includes bibliographical references and index.

Description based on print version record.

There are no comments on this title.

to post a comment.

Implemented and Maintained by Biju Patnaik Central Library.
For any Suggestions/Query Contact to library or Email: library@nitrkl.ac.in OR bpcl-cir@nitrkl.ac.in. Ph:91+6612462103
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha