Stability and Convergence of Mechanical Systems with Unilateral Constraints [electronic resource] / edited by Remco I. Leine, Nathan van de Wouw.

By: Leine, Remco I [editor.]Contributor(s): Wouw, Nathan van de [editor.] | SpringerLink (Online service)Material type: TextTextLanguage: English Series: Lecture Notes in Applied and Computational Mechanics: 36Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008Description: online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783540769750Subject(s): Engineering | Computer science -- Mathematics | Physics | Mechanics | Mechanics, applied | Vibration | Engineering | Theoretical and Applied Mechanics | Vibration, Dynamical Systems, Control | Numerical and Computational Methods in Engineering | Mechanics | Complexity | Computational Mathematics and Numerical AnalysisAdditional physical formats: Printed edition:: No titleDDC classification: 620.1 LOC classification: TA349-359Online resources: Click here to access online
Contents:
Non-smooth Analysis -- Measure and Integration Theory -- Non-smooth Dynamical Systems -- Mechanical Systems with Set-valued Force Laws -- Lyapunov Stability Theory for Measure Differential Inclusions -- Stability Properties in Mechanical Systems -- Convergence Properties of Monotone Measure Differential Inclusions -- Concluding Remarks.
In: Springer eBooksSummary: Stability of motion is a central theme in the dynamics of mechanical systems. While the stability theory for systems with bilateral constraints is a well-established field, this monograph represents a systematic study of mechanical systems with unilateral constraints, such as unilateral contact, impact and friction. Such unilateral constraints give rise to non-smooth dynamical models for which stability theory is developed in this work. The book starts with the treatise of the mathematical background on non-smooth analysis, measure and integration theory and an introduction to the field of non-smooth dynamical systems. The unilateral constraints are modelled in the framework of set-valued force laws developed in the field of non-smooth mechanics. The embedding of these constitutive models in the dynamics of mechanical systems gives rises to dynamical models with impulsive phenomena. This book uses the mathematical framework of measure differential inclusions to formalise such models. The book proceeds with the presentation of stability results for measure differential inclusions. These stability results are then applied to nonlinear mechanical systems with unilateral constraints. The book closes with the study of the convergence property for a class of measure differential inclusions; a stability property for systems with time-varying inputs which is shown to be highly instrumental in the context of the control of mechanical systems with unilateral constraints. While the book presents a profound stability theory for mechanical systems with unilateral constraints, it also has a tutorial value on the modelling of such systems in the framework of measure differential inclusions. The work will be of interest to engineers, scientists and students working in the field of non-smooth mechanics and dynamics.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
No physical items for this record

Non-smooth Analysis -- Measure and Integration Theory -- Non-smooth Dynamical Systems -- Mechanical Systems with Set-valued Force Laws -- Lyapunov Stability Theory for Measure Differential Inclusions -- Stability Properties in Mechanical Systems -- Convergence Properties of Monotone Measure Differential Inclusions -- Concluding Remarks.

Stability of motion is a central theme in the dynamics of mechanical systems. While the stability theory for systems with bilateral constraints is a well-established field, this monograph represents a systematic study of mechanical systems with unilateral constraints, such as unilateral contact, impact and friction. Such unilateral constraints give rise to non-smooth dynamical models for which stability theory is developed in this work. The book starts with the treatise of the mathematical background on non-smooth analysis, measure and integration theory and an introduction to the field of non-smooth dynamical systems. The unilateral constraints are modelled in the framework of set-valued force laws developed in the field of non-smooth mechanics. The embedding of these constitutive models in the dynamics of mechanical systems gives rises to dynamical models with impulsive phenomena. This book uses the mathematical framework of measure differential inclusions to formalise such models. The book proceeds with the presentation of stability results for measure differential inclusions. These stability results are then applied to nonlinear mechanical systems with unilateral constraints. The book closes with the study of the convergence property for a class of measure differential inclusions; a stability property for systems with time-varying inputs which is shown to be highly instrumental in the context of the control of mechanical systems with unilateral constraints. While the book presents a profound stability theory for mechanical systems with unilateral constraints, it also has a tutorial value on the modelling of such systems in the framework of measure differential inclusions. The work will be of interest to engineers, scientists and students working in the field of non-smooth mechanics and dynamics.

There are no comments on this title.

to post a comment.

Implemented and Maintained by Biju Patnaik Central Library.
For any Suggestions/Query Contact to library or Email: library@nitrkl.ac.in OR bpcl-cir@nitrkl.ac.in. Ph:91+6612462103
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha