Finite Element Methods for Engineering Sciences [electronic resource] : Theoretical Approach and Problem Solving Techniques / by Joel Chaskalovic.

By: Chaskalovic, Joel [author.]Contributor(s): SpringerLink (Online service)Material type: TextTextLanguage: English Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008Description: online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783540763437Subject(s): Engineering | Computer science | Engineering mathematics | Materials | Mechanical engineering | Engineering | Numerical and Computational Methods in Engineering | Appl.Mathematics/Computational Methods of Engineering | Computational Science and Engineering | Continuum Mechanics and Mechanics of Materials | Structural MechanicsAdditional physical formats: Printed edition:: No titleDDC classification: 006.3 LOC classification: Q342Online resources: Click here to access online
Contents:
Summary of Courses on Finite Elements -- Some Fundamental Classes of Finite Elements -- Variational Formulations -- Finite Elements in Deformable Solid Body Mechanics -- Finite Elements Applied to Strength of Materials -- Finite Elements Applied to Non Linear Problems.
In: Springer eBooksSummary: This self-tutorial offers a concise yet thorough grounding in the mathematics necessary for successfully applying FEMs to practical problems in science and engineering. The unique approach first summarizes and outlines the finite-element mathematics in general and then, in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite- element methods instead of passively absorbing the material, as in most standard textbooks. The enlarged English-language edition, based on the original French, also contains a chapter on the approximation steps derived from the description of nature with differential equations and then applied to the specific model to be used. Furthermore, an introduction to tensor calculus using distribution theory offers further insight for readers with different mathematical backgrounds.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
No physical items for this record

Summary of Courses on Finite Elements -- Some Fundamental Classes of Finite Elements -- Variational Formulations -- Finite Elements in Deformable Solid Body Mechanics -- Finite Elements Applied to Strength of Materials -- Finite Elements Applied to Non Linear Problems.

This self-tutorial offers a concise yet thorough grounding in the mathematics necessary for successfully applying FEMs to practical problems in science and engineering. The unique approach first summarizes and outlines the finite-element mathematics in general and then, in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite- element methods instead of passively absorbing the material, as in most standard textbooks. The enlarged English-language edition, based on the original French, also contains a chapter on the approximation steps derived from the description of nature with differential equations and then applied to the specific model to be used. Furthermore, an introduction to tensor calculus using distribution theory offers further insight for readers with different mathematical backgrounds.

There are no comments on this title.

to post a comment.

Implemented and Maintained by Biju Patnaik Central Library.
For any Suggestions/Query Contact to library or Email: library@nitrkl.ac.in OR bpcl-cir@nitrkl.ac.in. Ph:91+6612462103
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha