Engineering Evolutionary Intelligent Systems [electronic resource] / edited by Ajith Abraham, Crina Grosan, Witold Pedrycz.

By: Abraham, Ajith [editor.]Contributor(s): Grosan, Crina [editor.] | Pedrycz, Witold [editor.] | SpringerLink (Online service)Material type: TextTextLanguage: English Series: Studies in Computational Intelligence: 82Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008Description: XIX, 444 p. 191 illus. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783540753964Subject(s): Engineering | Artificial intelligence | Engineering mathematics | Engineering | Appl.Mathematics/Computational Methods of Engineering | Artificial Intelligence (incl. Robotics)Additional physical formats: Printed edition:: No titleDDC classification: 519 LOC classification: TA329-348TA640-643Online resources: Click here to access online
Contents:
Engineering Evolutionary Intelligent Systems: Methodologies, Architectures and Reviews -- Genetically Optimized Hybrid Fuzzy Neural Networks: Analysis and Design of Rule-based Multi-layer Perceptron Architectures -- Genetically Optimized Self-organizing Neural Networks Based on Polynomial and Fuzzy Polynomial Neurons: Analysis and Design -- Evolution of Inductive Self-organizing Networks -- Recursive Pattern based Hybrid Supervised Training -- Enhancing Recursive Supervised Learning Using Clustering and Combinatorial Optimization (RSL-CC) -- Evolutionary Approaches to Rule Extraction from Neural Networks -- Cluster-wise Design of Takagi and Sugeno Approach of Fuzzy Logic Controller -- Evolutionary Fuzzy Modelling for Drug Resistant HIV-1 Treatment Optimization -- A New Genetic Approach for Neural Network Design -- A Grammatical Genetic Programming Representation for Radial Basis Function Networks -- A Neural-Genetic Technique for Coastal Engineering: Determining Wave-induced Seabed Liquefaction Depth -- On the Design of Large-scale Cellular Mobile Networks Using Multi-population Memetic Algorithms -- A Hybrid Cellular Genetic Algorithm for the Capacitated Vehicle Routing Problem -- Particle Swarm Optimization with Mutation for High Dimensional Problems.
In: Springer eBooksSummary: Evolutionary design of intelligent systems is gaining much popularity due to its capabilities in handling several real world problems involving optimization, complexity, noisy and non-stationary environment, imprecision, uncertainty and vagueness. This edited volume 'Engineering Evolutionary Intelligent Systems' deals with the theoretical and methodological aspects, as well as various evolutionary algorithm applications to many real world problems originating from science, technology, business or commerce. This volume comprises of 15 chapters including an introductory chapter which covers the fundamental definitions and outlines some important research challenges. Chapters were selected on the basis of fundamental ideas/concepts rather than the thoroughness of techniques deployed.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
No physical items for this record

Engineering Evolutionary Intelligent Systems: Methodologies, Architectures and Reviews -- Genetically Optimized Hybrid Fuzzy Neural Networks: Analysis and Design of Rule-based Multi-layer Perceptron Architectures -- Genetically Optimized Self-organizing Neural Networks Based on Polynomial and Fuzzy Polynomial Neurons: Analysis and Design -- Evolution of Inductive Self-organizing Networks -- Recursive Pattern based Hybrid Supervised Training -- Enhancing Recursive Supervised Learning Using Clustering and Combinatorial Optimization (RSL-CC) -- Evolutionary Approaches to Rule Extraction from Neural Networks -- Cluster-wise Design of Takagi and Sugeno Approach of Fuzzy Logic Controller -- Evolutionary Fuzzy Modelling for Drug Resistant HIV-1 Treatment Optimization -- A New Genetic Approach for Neural Network Design -- A Grammatical Genetic Programming Representation for Radial Basis Function Networks -- A Neural-Genetic Technique for Coastal Engineering: Determining Wave-induced Seabed Liquefaction Depth -- On the Design of Large-scale Cellular Mobile Networks Using Multi-population Memetic Algorithms -- A Hybrid Cellular Genetic Algorithm for the Capacitated Vehicle Routing Problem -- Particle Swarm Optimization with Mutation for High Dimensional Problems.

Evolutionary design of intelligent systems is gaining much popularity due to its capabilities in handling several real world problems involving optimization, complexity, noisy and non-stationary environment, imprecision, uncertainty and vagueness. This edited volume 'Engineering Evolutionary Intelligent Systems' deals with the theoretical and methodological aspects, as well as various evolutionary algorithm applications to many real world problems originating from science, technology, business or commerce. This volume comprises of 15 chapters including an introductory chapter which covers the fundamental definitions and outlines some important research challenges. Chapters were selected on the basis of fundamental ideas/concepts rather than the thoroughness of techniques deployed.

There are no comments on this title.

to post a comment.

Implemented and Maintained by Biju Patnaik Central Library.
For any Suggestions/Query Contact to library or Email: library@nitrkl.ac.in OR bpcl-cir@nitrkl.ac.in. Ph:91+6612462103
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha