Material Inhomogeneities and their Evolution [electronic resource] : A Geometric Approach / by Marcelo Epstein, Marek Elżanowski.

By: Epstein, Marcelo [author.]Contributor(s): Elżanowski, Marek [author.] | SpringerLink (Online service)Material type: TextTextLanguage: English Series: Interaction Mechanics, Mathematics: Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2007Description: XIII, 261 p. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783540723738Subject(s): Engineering | Mathematics | Mechanics | Engineering mathematics | Materials | Engineering | Continuum Mechanics and Mechanics of Materials | Appl.Mathematics/Computational Methods of Engineering | Applications of Mathematics | MechanicsAdditional physical formats: Printed edition:: No titleDDC classification: 620.1 LOC classification: TA405-409.3QA808.2Online resources: Click here to access online
Contents:
Inhomogeneity in Continuum Mechanics -- An overview of inhomogeneity theory -- Uniformity of second-grade materials -- Uniformity of Cosserat media -- Functionally graded bodies -- Material Evolution -- On energy, Cauchy stress and Eshelby stress -- An overview of the theory of material evolution -- Second-grade evolution -- Mathematical Foundations -- Basic geometric concepts -- Theory of connections -- Bundles of linear frames -- Connections of higher order.
In: Springer eBooksSummary: Inhomogeneity theory is of importance for the description of a variety of material phenomena, including continuous distributions of dislocations, fracture mechanics, plasticity, biological remodelling and growth and, more generally, all processes that entail changes in the material body driven by forces known in literature as material or configurational. This monograph presents a unified treatment of the theory using some of the tools of modern differential geometry. The first part of the book deals with the geometrical description of uniform bodies and their homogeneity (i.e., integrability) conditions. In the second part, a theory of material evolution is developed and its relevance in various applied contexts discussed. The necessary geometrical notions are introduced as needed in the first two parts but often without due attention to an uncompromising mathematical rigour. This task is left for the third part of the book, which is a highly technical compendium of those concepts of modern differential geometry that are invoked in the first two parts (differentiable manifolds, Lie groups, jets, principal fibre bundles, G-structures, connections, frame bundles, integrable prolongations, groupoids, etc.). To make the text as useful as possible to active researchers and graduate students, considerable attention has been devoted to non-standard topics, such as second-grade materials, Cosserat media and functionally graded bodies.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
No physical items for this record

Inhomogeneity in Continuum Mechanics -- An overview of inhomogeneity theory -- Uniformity of second-grade materials -- Uniformity of Cosserat media -- Functionally graded bodies -- Material Evolution -- On energy, Cauchy stress and Eshelby stress -- An overview of the theory of material evolution -- Second-grade evolution -- Mathematical Foundations -- Basic geometric concepts -- Theory of connections -- Bundles of linear frames -- Connections of higher order.

Inhomogeneity theory is of importance for the description of a variety of material phenomena, including continuous distributions of dislocations, fracture mechanics, plasticity, biological remodelling and growth and, more generally, all processes that entail changes in the material body driven by forces known in literature as material or configurational. This monograph presents a unified treatment of the theory using some of the tools of modern differential geometry. The first part of the book deals with the geometrical description of uniform bodies and their homogeneity (i.e., integrability) conditions. In the second part, a theory of material evolution is developed and its relevance in various applied contexts discussed. The necessary geometrical notions are introduced as needed in the first two parts but often without due attention to an uncompromising mathematical rigour. This task is left for the third part of the book, which is a highly technical compendium of those concepts of modern differential geometry that are invoked in the first two parts (differentiable manifolds, Lie groups, jets, principal fibre bundles, G-structures, connections, frame bundles, integrable prolongations, groupoids, etc.). To make the text as useful as possible to active researchers and graduate students, considerable attention has been devoted to non-standard topics, such as second-grade materials, Cosserat media and functionally graded bodies.

There are no comments on this title.

to post a comment.

Implemented and Maintained by Biju Patnaik Central Library.
For any Suggestions/Query Contact to library or Email: library@nitrkl.ac.in OR bpcl-cir@nitrkl.ac.in. Ph:91+6612462103
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha