PCR applications [electronic resource] : protocols for functional genomics / edited by Michael A. Innis, David H. Gelfand, John J. Sninsky.

Contributor(s): Sninsky, John J | Innis, Michael A | Gelfand, David HMaterial type: TextTextPublisher: San Diego : Academic Press, c1999Description: 1 online resource (xviii, 566 p., [3] p. of plates) : ill. (some col.)ISBN: 9780123721853; 0123721857Subject(s): Polymerase chain reaction | Gene amplification | Polymerase chain reaction -- Laboratory manuals | Gene amplification -- Laboratory manuals | Genomics -- Laboratory manuals | Polymerase Chain Reaction -- methods | Genetic Engineering | Genomes | Polymerase chain reaction -- Diagnostic use | R�eaction en cha�ine de la polym�erase | Amplification g�enique | R�eaction en cha�ine de la polym�erase -- Manuels de laboratoire | Amplification g�enique -- Manuels de laboratoire | Polymerase kettingreactie | GenoomGenre/Form: Electronic books.Additional physical formats: Print version:: PCR applications.DDC classification: 572.8/6 LOC classification: QP606.D46 | P346 1999ebOnline resources: ScienceDirect
Contents:
pt. 1. Key concepts for PCR-- Ch. 1. Optimization of PCR: conversations between Michael and David-- Ch. 2. The convergence of PCR, computers, and the human genome project: past, present, and future-- Ch. 3. Thermostable DNA polymerases: an update-- Ch. 4. Musings on microbial genomes-- Ch. 5. Statistical refinement of primer design parameters-- Ch. 6. Multiplex PCR: optimization guidelines-- Ch. 7. The use of immobilized mismatch binding protein for the optimization of PCR fidelity -- Ch. 8. A new generation of PCR instruments and nucleic acid concentration systems-- Ch. 9. Sequencing PCR products-- Ch. 10. Recent advances in high-temperature reverse transcription and PCR-- Ch. 11. Viral genotyping by a quantitative point mutation assay: application to HIV-1 drug resistance-- Ch. 12. In situ PCR-- pt. 2. Quantitative PCR-- Ch. 13. Standards for PCR assays-- Ch. 14. Rapid thermal cycling and PCR kinetics-- Ch. 15. Kinetics of competitive reverse transcriptase-PCR -- Ch. 16. Kinetic PCR analysis using a CCD camera and without using oligonucleotide probes-- Ch. 17. Quantification of telomerase activity using telomeric repeat amplification protocol-- pt. 3. Gene discovery-- Ch. 18. Differential display-- Ch. 19. Single-cell cDNA libraries-- Ch. 20. Whole cell assays-- Ch. 21. Screening differentially displayed PCR products by single-strand conformation polymorphism gels-- Ch. 22. Microsatellite protocols-- Ch. 23. Real-time quantitative PCR: uses in discovery research -- Ch. 24. Homology cloning: a molecular taxonomy of the archaea-- Ch. 25. Cloning mammalian homologs of drosophila genes-- Ch. 26. Cloning human homologs of yeast genes-- pt. 4. Genomics and expression profiling-- Ch. 27. Cellular transcriptome analysis using a kinetic PCR assay-- Ch. 28. Parallel analysis with biological chips-- Ch. 29. High-density cDNA grids for hybridization fingerprinting experiments-- Ch. 30. Comparative genomics hybridization-- Ch. 31. Genetic footprinting and functional maps of the yeast genome -- Ch. 32. Molecular analysis of microdissected tissue: laser capture microdissection-- Ch. 33. Amplified fragmant length polymorphism: studies on plant development-- Ch. 34. A florescent, multiplex solid-phase minisequencing method for genotyping cytochrome P450 genes-- Ch. 35. The Cleavase I enzyme for mutation and polymorphism scanning.
Summary: PCR is the most powerful technique currently used in molecular biology. It enables the scientist to quickly replicate DNA and RNA on the benchtop. From its discovery in the early 80's, PCR has blossomed into a method that enables everything from ready mutation of DNA/RNA to speedy analysis of tens of thousands of nucleotide sequences daily. PCR Applications examines the latest developments in this field. It is the third book in the series, building on the previous publications PCR Protocols and PCR Strategies. The manual discusses techniques that focus on gene discovery, genomics, and DNA array technology, which are contributing factors to the now-occurring bioinformatics boom. Entries provide information on: * Nomenclature * Expression * Sequence analysis * Structure and function * Electrophysiology * Parmacology * Information retrieval.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
No physical items for this record

Includes bibliographical references and index.

pt. 1. Key concepts for PCR-- Ch. 1. Optimization of PCR: conversations between Michael and David-- Ch. 2. The convergence of PCR, computers, and the human genome project: past, present, and future-- Ch. 3. Thermostable DNA polymerases: an update-- Ch. 4. Musings on microbial genomes-- Ch. 5. Statistical refinement of primer design parameters-- Ch. 6. Multiplex PCR: optimization guidelines-- Ch. 7. The use of immobilized mismatch binding protein for the optimization of PCR fidelity -- Ch. 8. A new generation of PCR instruments and nucleic acid concentration systems-- Ch. 9. Sequencing PCR products-- Ch. 10. Recent advances in high-temperature reverse transcription and PCR-- Ch. 11. Viral genotyping by a quantitative point mutation assay: application to HIV-1 drug resistance-- Ch. 12. In situ PCR-- pt. 2. Quantitative PCR-- Ch. 13. Standards for PCR assays-- Ch. 14. Rapid thermal cycling and PCR kinetics-- Ch. 15. Kinetics of competitive reverse transcriptase-PCR -- Ch. 16. Kinetic PCR analysis using a CCD camera and without using oligonucleotide probes-- Ch. 17. Quantification of telomerase activity using telomeric repeat amplification protocol-- pt. 3. Gene discovery-- Ch. 18. Differential display-- Ch. 19. Single-cell cDNA libraries-- Ch. 20. Whole cell assays-- Ch. 21. Screening differentially displayed PCR products by single-strand conformation polymorphism gels-- Ch. 22. Microsatellite protocols-- Ch. 23. Real-time quantitative PCR: uses in discovery research -- Ch. 24. Homology cloning: a molecular taxonomy of the archaea-- Ch. 25. Cloning mammalian homologs of drosophila genes-- Ch. 26. Cloning human homologs of yeast genes-- pt. 4. Genomics and expression profiling-- Ch. 27. Cellular transcriptome analysis using a kinetic PCR assay-- Ch. 28. Parallel analysis with biological chips-- Ch. 29. High-density cDNA grids for hybridization fingerprinting experiments-- Ch. 30. Comparative genomics hybridization-- Ch. 31. Genetic footprinting and functional maps of the yeast genome -- Ch. 32. Molecular analysis of microdissected tissue: laser capture microdissection-- Ch. 33. Amplified fragmant length polymorphism: studies on plant development-- Ch. 34. A florescent, multiplex solid-phase minisequencing method for genotyping cytochrome P450 genes-- Ch. 35. The Cleavase I enzyme for mutation and polymorphism scanning.

PCR is the most powerful technique currently used in molecular biology. It enables the scientist to quickly replicate DNA and RNA on the benchtop. From its discovery in the early 80's, PCR has blossomed into a method that enables everything from ready mutation of DNA/RNA to speedy analysis of tens of thousands of nucleotide sequences daily. PCR Applications examines the latest developments in this field. It is the third book in the series, building on the previous publications PCR Protocols and PCR Strategies. The manual discusses techniques that focus on gene discovery, genomics, and DNA array technology, which are contributing factors to the now-occurring bioinformatics boom. Entries provide information on: * Nomenclature * Expression * Sequence analysis * Structure and function * Electrophysiology * Parmacology * Information retrieval.

Description based on print version record.

There are no comments on this title.

to post a comment.

Implemented and Maintained by Biju Patnaik Central Library.
For any Suggestions/Query Contact to library or Email: library@nitrkl.ac.in OR bpcl-cir@nitrkl.ac.in. Ph:91+6612462103
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha