Principles of Adaptive Filters and Self-learning Systems [electronic resource] / by Anthony Zaknich ; edited by Michael J. Grimble, Michael A. Johnson.

By: Zaknich, Anthony [author.]Contributor(s): Grimble, Michael J [editor.] | Johnson, Michael A [editor.] | SpringerLink (Online service)Material type: TextTextLanguage: English Series: Advanced Textbooks in Control and Signal Processing: Publisher: London : Springer London, 2005Description: XXII, 386p. 95 illus. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9781846281211Subject(s): Engineering | Artificial intelligence | Mechanical engineering | Engineering | Signal, Image and Speech Processing | Artificial Intelligence (incl. Robotics) | Control Engineering | Electronic and Computer Engineering | Mechanical Engineering | Physics and Applied Physics in EngineeringAdditional physical formats: Printed edition:: No titleDDC classification: 621.382 LOC classification: TK5102.9TA1637-1638TK7882.S65Online resources: Click here to access online
Contents:
Adaptive Filtering -- Linear Systems and Stochastic Processes -- Modelling -- Optimisation and Least Squares Estimation -- Parametric Signal and System Modelling -- Classical Filters and Spectral Analysis -- Optimum Wiener Filter -- Optimum Kalman Filter -- Power Spectral Density Analysis -- Adaptive Filter Theory -- Adaptive Finite Impulse Response Filters -- Frequency Domain Adaptive Filters -- Adaptive Volterra Filters -- Adaptive Control Systems -- Nonclassical Adaptive Systems -- to Neural Networks -- to Fuzzy Logic Systems -- to Genetic Algorithms -- Adaptive Filter Application -- Applications of Adaptive Signal Processing -- Generic Adaptive Filter Structures.
In: Springer eBooksSummary: Kalman and Wiener Filters, Neural Networks, Genetic Algorithms and Fuzzy Logic Systems Together in One Text Book How can a signal be processed for which there are few or no a priori data? Professor Zaknich provides an ideal textbook for one-semester introductory graduate or senior undergraduate courses in adaptive and self-learning systems for signal processing applications. Important topics are introduced and discussed sufficiently to give the reader adequate background for confident further investigation. The material is presented in a progression from a short introduction to adaptive systems through modelling, classical filters and spectral analysis to adaptive control theory, nonclassical adaptive systems and applications. Features: • Comprehensive review of linear and stochastic theory. • Design guide for practical application of the least squares estimation method and Kalman filters. • Study of classical adaptive systems together with neural networks, genetic algorithms and fuzzy logic systems and their combination to deal with such complex problems as underwater acoustic signal processing. • Tutorial problems and exercises which identify the significant points and demonstrate the practical relevance of the theory. • PDF Solutions Manual, available to tutors from springeronline.com, containing not just answers to the tutorial problems but also course outlines, sample examination material and project assignments to help in developing a teaching programme and to give ideas for practical investigations.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
No physical items for this record

Adaptive Filtering -- Linear Systems and Stochastic Processes -- Modelling -- Optimisation and Least Squares Estimation -- Parametric Signal and System Modelling -- Classical Filters and Spectral Analysis -- Optimum Wiener Filter -- Optimum Kalman Filter -- Power Spectral Density Analysis -- Adaptive Filter Theory -- Adaptive Finite Impulse Response Filters -- Frequency Domain Adaptive Filters -- Adaptive Volterra Filters -- Adaptive Control Systems -- Nonclassical Adaptive Systems -- to Neural Networks -- to Fuzzy Logic Systems -- to Genetic Algorithms -- Adaptive Filter Application -- Applications of Adaptive Signal Processing -- Generic Adaptive Filter Structures.

Kalman and Wiener Filters, Neural Networks, Genetic Algorithms and Fuzzy Logic Systems Together in One Text Book How can a signal be processed for which there are few or no a priori data? Professor Zaknich provides an ideal textbook for one-semester introductory graduate or senior undergraduate courses in adaptive and self-learning systems for signal processing applications. Important topics are introduced and discussed sufficiently to give the reader adequate background for confident further investigation. The material is presented in a progression from a short introduction to adaptive systems through modelling, classical filters and spectral analysis to adaptive control theory, nonclassical adaptive systems and applications. Features: • Comprehensive review of linear and stochastic theory. • Design guide for practical application of the least squares estimation method and Kalman filters. • Study of classical adaptive systems together with neural networks, genetic algorithms and fuzzy logic systems and their combination to deal with such complex problems as underwater acoustic signal processing. • Tutorial problems and exercises which identify the significant points and demonstrate the practical relevance of the theory. • PDF Solutions Manual, available to tutors from springeronline.com, containing not just answers to the tutorial problems but also course outlines, sample examination material and project assignments to help in developing a teaching programme and to give ideas for practical investigations.

There are no comments on this title.

to post a comment.

Implemented and Maintained by Biju Patnaik Central Library.
For any Suggestions/Query Contact to library or Email: library@nitrkl.ac.in OR bpcl-cir@nitrkl.ac.in. Ph:91+6612462103
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha