Predictive Modeling of Dynamic Processes [electronic resource] : A Tribute to Professor Klaus Thoma / edited by Stefan Hiermaier.

By: Hiermaier, Stefan [editor.]Contributor(s): SpringerLink (Online service)Material type: TextTextLanguage: English Publisher: Boston, MA : Springer US, 2009Description: XX, 460p. 200 illus. in color. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9781441907271Subject(s): Engineering | Computer simulation | Mechanics | Materials | Astronautics | Surfaces (Physics) | Engineering | Continuum Mechanics and Mechanics of Materials | Mechanics | Simulation and Modeling | Characterization and Evaluation of Materials | Automotive Engineering | Aerospace Technology and AstronauticsAdditional physical formats: Printed edition:: No titleDDC classification: 620.1 LOC classification: TA405-409.3QA808.2Online resources: Click here to access online
Contents:
I Simulation of Automotive Crash Processes -- Simulation of Recoverable Foams under Impact Loading -- The Numerical Simulation of Foam – An Example of Inter-Industrial Synergy -- Influence of Hardening Relations on Forming Limit Curves Predicted by the Theory of Marciniak, Kuczyński, and Pokora -- The Challenge to Predict Material Failure in Crashworthiness Applications: Simulation of Producibility to Serviceability -- Cohesive Zone Modeling for Adhesives -- Modeling the Plasticity of Various Material Classes with a Single Quadratic Yield Function -- On the Computation of a Generalised Dynamic J-Integral and its Application to the Durability of Steel Structures -- II Numerical Modeling of Blast and Impact Phenomena -- The MAX-Analysis: New Computational and Post-Processing Procedures for Vehicle Safety Analysis -- 10 Years RHT: A Review of Concrete Modelling and Hydrocode Applications -- Numerical Simulations of the Penetration of Glass Using Two Pressure-Dependent Constitutive Models -- On the main mechanisms in ballistic perforation of steel plates at sub-ordnance impact velocities -- Dimensioning of concrete walls against small calibre impact including models for deformable penetrators and the scattering of experimental results -- Numerical Analysis of Fluiddynamic Instabilities and Pressure Fluctuations in the Near Field of a Detonation -- Numerical Simulation of Muzzle Exit and Separation Process for Sabot–Guided Projectiles at M > 1 -- Numerical Analysis of the Supercavitating Flow about blunt Bodies -- Numerical Analysis Method for the RC Structures Subjected to Aircraft Impact and HE Detonation -- Groundshock Displacements–Experiment and Simulation -- III Numerical Simulation of Hypervelocity Impact Effects -- Hypervelocity Impact Induced ShockWaves and Related Equations of State -- Artificial Viscosity Methods forModelling Shock Wave Propagation -- Review of Development of the Smooth Particle Hydrodynamics (SPH) Method -- Assessing the Resiliency of Composite Structural Systems and Materials Used in Earth-Orbiting Spacecraft to Hypervelocity Projectile Impact -- Numerical Simulation in Micrometeoroid and Orbital Debris Risk Assessment -- Numerical Modeling of Crater Formation by Meteorite Impact and Nuclear Explosion.
In: Springer eBooksSummary: Predictive Modeling of Dynamic Processes provides an overview of numerical simulation technology, applicable to a variety of industries and areas of engineering design. Covering automotive crash, blast, impact, and hypervelocity impact phenomena, this volume offers readers an in-depth explanation of the simulation potential for research and development. Chapters include informative introductions to each topic, and explain the specific requirements pertaining to a predictive numerical methodology. Successfully blending basics of material modeling, crash simulation and impact engineering, this volume fills a gap in the current competing literature available.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
No physical items for this record

I Simulation of Automotive Crash Processes -- Simulation of Recoverable Foams under Impact Loading -- The Numerical Simulation of Foam – An Example of Inter-Industrial Synergy -- Influence of Hardening Relations on Forming Limit Curves Predicted by the Theory of Marciniak, Kuczyński, and Pokora -- The Challenge to Predict Material Failure in Crashworthiness Applications: Simulation of Producibility to Serviceability -- Cohesive Zone Modeling for Adhesives -- Modeling the Plasticity of Various Material Classes with a Single Quadratic Yield Function -- On the Computation of a Generalised Dynamic J-Integral and its Application to the Durability of Steel Structures -- II Numerical Modeling of Blast and Impact Phenomena -- The MAX-Analysis: New Computational and Post-Processing Procedures for Vehicle Safety Analysis -- 10 Years RHT: A Review of Concrete Modelling and Hydrocode Applications -- Numerical Simulations of the Penetration of Glass Using Two Pressure-Dependent Constitutive Models -- On the main mechanisms in ballistic perforation of steel plates at sub-ordnance impact velocities -- Dimensioning of concrete walls against small calibre impact including models for deformable penetrators and the scattering of experimental results -- Numerical Analysis of Fluiddynamic Instabilities and Pressure Fluctuations in the Near Field of a Detonation -- Numerical Simulation of Muzzle Exit and Separation Process for Sabot–Guided Projectiles at M > 1 -- Numerical Analysis of the Supercavitating Flow about blunt Bodies -- Numerical Analysis Method for the RC Structures Subjected to Aircraft Impact and HE Detonation -- Groundshock Displacements–Experiment and Simulation -- III Numerical Simulation of Hypervelocity Impact Effects -- Hypervelocity Impact Induced ShockWaves and Related Equations of State -- Artificial Viscosity Methods forModelling Shock Wave Propagation -- Review of Development of the Smooth Particle Hydrodynamics (SPH) Method -- Assessing the Resiliency of Composite Structural Systems and Materials Used in Earth-Orbiting Spacecraft to Hypervelocity Projectile Impact -- Numerical Simulation in Micrometeoroid and Orbital Debris Risk Assessment -- Numerical Modeling of Crater Formation by Meteorite Impact and Nuclear Explosion.

Predictive Modeling of Dynamic Processes provides an overview of numerical simulation technology, applicable to a variety of industries and areas of engineering design. Covering automotive crash, blast, impact, and hypervelocity impact phenomena, this volume offers readers an in-depth explanation of the simulation potential for research and development. Chapters include informative introductions to each topic, and explain the specific requirements pertaining to a predictive numerical methodology. Successfully blending basics of material modeling, crash simulation and impact engineering, this volume fills a gap in the current competing literature available.

There are no comments on this title.

to post a comment.

Implemented and Maintained by Biju Patnaik Central Library.
For any Suggestions/Query Contact to library or Email: library@nitrkl.ac.in OR bpcl-cir@nitrkl.ac.in. Ph:91+6612462103
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha