Jefrin Jose , P

Dynamics and Control of Flexible Composite Robotic Manipulators Based on Finite Element Method - 2015 - 70 p.

The robotic manipulator is a device to carry out the various tasks according to the requirements without any human intervention. Vibration analysis of flexible manipulators has been an important area of research in order to model and control of such systems. In the present analysis, the Timoshenko beam theory based single and double link flexible manipulators made up of advanced composite material have been analyzed using finite element method. A three noded beam element has been implemented for modelling and analysis of the flexible composite manipulators under different input torques. The effects of hybridization of the different composite materials on the positions and residuals of the end effectors have also been studied. The input shaping has also been carried out in order to reduce the residual vibration of the end effector by adjusting the amplitude and time delay. The influences of the taper angles of the tapered flexible composite manipulators on the end effector movement and vibration have also been presented. The linear quadratic regulator control (LQR) scheme has been applied in order to further reduce the residual vibration of the end effector. Various results have been obtained based on the different analyses. The results reveal that the tapered hollow flexible composite manipulators give the better performances in terms of end effector positions and residual vibration. The obtained results based on the LQR control scheme show that residual vibration can be controlled without compromising the end effector movement.

Engineering and Technology
Mechanical Engineering

Implemented and Maintained by Biju Patnaik Central Library.
For any Suggestions/Query Contact to library or Email: OR Ph:91+6612462103
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha