Chi, Chong-Yung.

Blind Equalization and System Identification Batch Processing Algorithms, Performance and Applications / [electronic resource] : by Chong-Yung Chi, Chii-Horng Chen, Chih-Chun Feng, Ching-Yung Chen. - London : Springer London, 2006. - XIII, 469 p. 112 illus. online resource.

Mathematical Background -- Fundamentals of Statistical Signal Processing -- SISO Blind Equalization Algorithms -- MIMO Blind Equalization Algorithms -- Applications of MIMO Blind Equalization Algorithms -- Two-Dimensional Blind Deconvolution Algorithms -- Applications of Two-Dimensional Blind Deconvolution Algorithms.

Discrete-time signal processing has had a momentous impact on advances in engineering and science over recent decades. The rapid progress of digital and mixed-signal integrated circuits in processing speed, functionality and cost-effectiveness has led to their ubiquitous employment in signal processing and transmission in diverse milieux. The absence of training or pilot signals from many kinds of transmission – in, for example, speech analysis, seismic exploration and texture image analysis – necessitates the widespread use of blind equalization and system identification. There have been a great many algorithms developed for these purposes, working with one- or two-dimensional (2-d) signals and with single-input single-output (SISO) or multiple-input multiple-output (MIMO), real or complex systems. It is now time for a unified treatment of this subject, pointing out the common characteristics and the sometimes close relations of these algorithms as well as learning from their different perspectives. Blind Equalization and System Identification provides such a unified treatment presenting theory, performance analysis, simulation, implementation and applications. Topics covered include: • SISO, MIMO and 2-d non-blind equalization (deconvolution) algorithms; • SISO, MIMO and 2-d blind equalization (deconvolution) algorithms; • SISO, MIMO and 2-d blind system identification algorithms; • algorithm analyses and improvements; • applications of SISO, MIMO and 2-d blind equalization/identification algorithms. Each chapter is completed by exercises and computer assignments designed to further understanding and to give practical experience with the algorithms discussed. This is a textbook for graduate-level courses in discrete-time random processes, statistical signal processing, and blind equalization and system identification. It contains material which will also interest researchers and practicing engineers working in digital communications, source separation, speech processing, image processing, seismic exploration, sonar, radar and other, similar applications.


10.1007/1-84628-218-7 doi

Physical geography.
Computer software.
Computer vision.
Signal, Image and Speech Processing.
Image Processing and Computer Vision.
Communications Engineering, Networks.
Algorithm Analysis and Problem Complexity.

TK5102.9 TA1637-1638 TK7882.S65


Implemented and Maintained by Biju Patnaik Central Library.
For any Suggestions/Query Contact to library or Email: OR Ph:91+6612462103
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha