Lattice Boltzmann Method [electronic resource] : Fundamentals and Engineering Applications with Computer Codes / by A. A. Mohamad.

By: Mohamad, A. A [author.]Contributor(s): SpringerLink (Online service)Material type: TextTextLanguage: English Publisher: London : Springer London, 2011Description: XV, 178 p. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9780857294555Subject(s): Engineering | Hydraulic engineering | Engineering | Engineering Thermodynamics, Heat and Mass Transfer | Classical Continuum Physics | Engineering Fluid Dynamics | Numerical and Computational PhysicsAdditional physical formats: Printed edition:: No titleDDC classification: 621.4021 LOC classification: TJ265QC319.8-338.5Online resources: Click here to access online
Contents:
1 Introduction and Kinetic of Particles -- 2. The Boltzmann Equation -- 3. The Diffusion Equation -- 4. Advection-Diffusion Problems -- 5. Isothermal Incompressible Fluid Flow -- 6. Non-isothermal Incompressible Fluid Flow -- 7. Multi-relaxation Schemes -- 8. Complex Flows.
In: Springer eBooksSummary: Lattice Boltzmann Method introduces the lattice Boltzmann method (LBM) for solving transport phenomena – flow, heat and mass transfer – in a systematic way. Providing explanatory computer codes throughout the book, the author guides readers through many practical examples, such as: flow in isothermal and non-isothermal lid driven cavities; flow over obstacles; forced flow through a heated channel; conjugate forced convection; and natural convection. Diffusion and advection-diffusion equations are discussed with applications and examples, and complete computer codes accompany the coverage of single and multi-relaxation-time methods. Although the codes are written in FORTRAN, they can be easily translated to other languages, such as C++. The codes can also be extended with little effort to multi-phase and multi-physics, if the reader knows the physics of the problem. Readers with some experience of advanced mathematics and physics will find Lattice Boltzmann Method a useful and easy-to-follow text. It has been written for those who are interested in learning and applying the LBM to engineering and industrial problems and it can also serve as a textbook for advanced undergraduate or graduate students who are studying computational transport phenomena.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
No physical items for this record

1 Introduction and Kinetic of Particles -- 2. The Boltzmann Equation -- 3. The Diffusion Equation -- 4. Advection-Diffusion Problems -- 5. Isothermal Incompressible Fluid Flow -- 6. Non-isothermal Incompressible Fluid Flow -- 7. Multi-relaxation Schemes -- 8. Complex Flows.

Lattice Boltzmann Method introduces the lattice Boltzmann method (LBM) for solving transport phenomena – flow, heat and mass transfer – in a systematic way. Providing explanatory computer codes throughout the book, the author guides readers through many practical examples, such as: flow in isothermal and non-isothermal lid driven cavities; flow over obstacles; forced flow through a heated channel; conjugate forced convection; and natural convection. Diffusion and advection-diffusion equations are discussed with applications and examples, and complete computer codes accompany the coverage of single and multi-relaxation-time methods. Although the codes are written in FORTRAN, they can be easily translated to other languages, such as C++. The codes can also be extended with little effort to multi-phase and multi-physics, if the reader knows the physics of the problem. Readers with some experience of advanced mathematics and physics will find Lattice Boltzmann Method a useful and easy-to-follow text. It has been written for those who are interested in learning and applying the LBM to engineering and industrial problems and it can also serve as a textbook for advanced undergraduate or graduate students who are studying computational transport phenomena.

There are no comments on this title.

to post a comment.


Implemented and Maintained by Biju Patnaik Central Library.
For any Suggestions/Query Contact to library or Email: library@nitrkl.ac.in OR bpcl-cir@nitrkl.ac.in. Ph:91+6612462103
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha