BioNanoFluidic MEMS [electronic resource] / edited by Peter J. Hesketh.

By: Hesketh, Peter J [editor.]Contributor(s): SpringerLink (Online service)Material type: TextTextLanguage: English Series: MEMS Reference Shelf: Publisher: Boston, MA : Springer US, 2008Description: online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9780387462837Subject(s): Chemistry | Biomedical engineering | Hydraulic engineering | Systems engineering | Biomaterials | Nanotechnology | Chemistry | Nanotechnology | Circuits and Systems | Biomedical Engineering | Engineering Fluid Dynamics | Biophysics/Biomedical Physics | BiomaterialsAdditional physical formats: Printed edition:: No titleOnline resources: Click here to access online
Contents:
Nanotechnology: Retrospect and Prospect -- Synthesis of Oxide Nanostructures -- Nanolithography -- Nano/Microfabrication Methods for Sensors and NEMS/MEMS -- Micro- and Nanomanufacturing via Molding -- Temperature Measurement of Microdevices using Thermoreflectance and Raman Thermometry -- Stereolithography and Rapid Prototyping -- Case Studies in Chemical Sensor Development -- Engineered Nanopores -- Engineering Biomaterial Interfaces Through Micro and Nano-Patterning -- Biosensors Micro and Nano Integration.
In: Springer eBooksSummary: BioNanoFluidic MEMS explains nanofabrication and nanomaterials synthesis suitable for the development of biosensors. The fundamentals initiate an awareness for engineers and scientists who would like to develop and implement novel biosensors for various applications. In addition, the material covered includes: BioNanoFluidic MEMS connection between the interdisciplinary nature of BioNanoFluidics and MEMS BioNanoFluidics and sensor technology including Micro-Mechanical Sensors and Chemical Sensor Technologies Hands-on steps for implementation of biosensor fabrication including a discussion of the clean room lithography process and etching, microsensor systems lamination, PDMS moulding, parylene deposition, and others Interconnection between the interdisciplinary nature of BioNanoFluidics and MEMS BioNanoFluidics and sensor technology including Micro-Mechanical Sensors and Chemical Sensor Technologies Discussion of fabrication processes for implementation of biosensor and nanochemical sensors including the clean room lithography process, etching, chemical vapor deposition, electroplating, microsensor systems lamination, PDMS moulding, parylene deposition, and others Selected coverage of Nano/Microfabrication, Nano Manufacturing and Nano/Micro Integration "The MEMS Reference Shelf is a series devoted to Micro-Electro-Mechanical Systems (MEMS), which combine mechanical,electrical, optical, or fluidic elements on a common microfabricated substrate to create sensors, actuators, and microsystems. This series,authored by leading MEMS practitioners, strives to provide a framework where basic principles, known methodologies, and new applications are integrated in a coherent and consistent manner." STEPHEN D. SENTURIAMassachusetts Institute of Technology, Professor of Electrical Engineering, Emiritus
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
No physical items for this record

Nanotechnology: Retrospect and Prospect -- Synthesis of Oxide Nanostructures -- Nanolithography -- Nano/Microfabrication Methods for Sensors and NEMS/MEMS -- Micro- and Nanomanufacturing via Molding -- Temperature Measurement of Microdevices using Thermoreflectance and Raman Thermometry -- Stereolithography and Rapid Prototyping -- Case Studies in Chemical Sensor Development -- Engineered Nanopores -- Engineering Biomaterial Interfaces Through Micro and Nano-Patterning -- Biosensors Micro and Nano Integration.

BioNanoFluidic MEMS explains nanofabrication and nanomaterials synthesis suitable for the development of biosensors. The fundamentals initiate an awareness for engineers and scientists who would like to develop and implement novel biosensors for various applications. In addition, the material covered includes: BioNanoFluidic MEMS connection between the interdisciplinary nature of BioNanoFluidics and MEMS BioNanoFluidics and sensor technology including Micro-Mechanical Sensors and Chemical Sensor Technologies Hands-on steps for implementation of biosensor fabrication including a discussion of the clean room lithography process and etching, microsensor systems lamination, PDMS moulding, parylene deposition, and others Interconnection between the interdisciplinary nature of BioNanoFluidics and MEMS BioNanoFluidics and sensor technology including Micro-Mechanical Sensors and Chemical Sensor Technologies Discussion of fabrication processes for implementation of biosensor and nanochemical sensors including the clean room lithography process, etching, chemical vapor deposition, electroplating, microsensor systems lamination, PDMS moulding, parylene deposition, and others Selected coverage of Nano/Microfabrication, Nano Manufacturing and Nano/Micro Integration "The MEMS Reference Shelf is a series devoted to Micro-Electro-Mechanical Systems (MEMS), which combine mechanical,electrical, optical, or fluidic elements on a common microfabricated substrate to create sensors, actuators, and microsystems. This series,authored by leading MEMS practitioners, strives to provide a framework where basic principles, known methodologies, and new applications are integrated in a coherent and consistent manner." STEPHEN D. SENTURIAMassachusetts Institute of Technology, Professor of Electrical Engineering, Emiritus

There are no comments on this title.

to post a comment.


Implemented and Maintained by Biju Patnaik Central Library.
For any Suggestions/Query Contact to library or Email: library@nitrkl.ac.in OR bpcl-cir@nitrkl.ac.in. Ph:91+6612462103
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha