Normal view MARC view ISBD view

Modelling and Reasoning with Vague Concepts [electronic resource] / by Jonathan Lawry.

By: Lawry, Jonathan [author.].
Contributor(s): SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Studies in Computational Intelligence: 12Publisher: Boston, MA : Springer US, 2006Description: XXV, 246 p. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9780387302621.Subject(s): Computer science | Artificial intelligence | Optical pattern recognition | Mathematics | Computer Science | Artificial Intelligence (incl. Robotics) | Systems and Information Theory in Engineering | Pattern Recognition | Information and Communication, Circuits | Probability and Statistics in Computer Science | Mathematical Logic and Formal LanguagesDDC classification: 006.3 Online resources: Click here to access online
Contents:
Vague Concepts and Fuzzy Sets -- Label Semantics -- Multi-Dimensional and Multi-Instance Label Semantics -- Information from Vague Concepts -- Learning Linguistic Models from Data -- Fusing Knowledge and Data -- Non-Additive Appropriateness Measures.
In: Springer eBooksSummary: Vagueness is central to the flexibility and robustness of natural language descriptions. Vague concepts are robust to the imprecision of our perceptions, while still allowing us to convey useful, and sometimes vital, information. The study of vagueness in Artificial Intelligence (AI) is therefore motivated by the desire to incorporate this robustness and flexibility into intelligent computer systems. Such a goal, however, requires a formal model of vague concepts that will allow us to quantify and manipulate the uncertainty resulting from their use as a means of passing information between autonomous agents. This volume outlines a formal representation framework for modelling and reasoning with vague concepts in Artificial Intelligence. The new calculus has many applications, especially in automated reasoning, learning, data analysis and information fusion. This book gives a rigorous introduction to label semantics theory, illustrated with many examples, and suggests clear operational interpretations of the proposed measures. It also provides a detailed description of how the theory can be applied in data analysis and information fusion based on a range of benchmark problems.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
No physical items for this record

Vague Concepts and Fuzzy Sets -- Label Semantics -- Multi-Dimensional and Multi-Instance Label Semantics -- Information from Vague Concepts -- Learning Linguistic Models from Data -- Fusing Knowledge and Data -- Non-Additive Appropriateness Measures.

Vagueness is central to the flexibility and robustness of natural language descriptions. Vague concepts are robust to the imprecision of our perceptions, while still allowing us to convey useful, and sometimes vital, information. The study of vagueness in Artificial Intelligence (AI) is therefore motivated by the desire to incorporate this robustness and flexibility into intelligent computer systems. Such a goal, however, requires a formal model of vague concepts that will allow us to quantify and manipulate the uncertainty resulting from their use as a means of passing information between autonomous agents. This volume outlines a formal representation framework for modelling and reasoning with vague concepts in Artificial Intelligence. The new calculus has many applications, especially in automated reasoning, learning, data analysis and information fusion. This book gives a rigorous introduction to label semantics theory, illustrated with many examples, and suggests clear operational interpretations of the proposed measures. It also provides a detailed description of how the theory can be applied in data analysis and information fusion based on a range of benchmark problems.

There are no comments for this item.

Log in to your account to post a comment.


Implemented and Maintained by Biju Patnaik Central Library.
For any Suggestions/Query Contact to library or Email: library@nitrkl.ac.in OR bpcl-cir@nitrkl.ac.in. Ph:91+6612462103
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha