Energy optimization in process systems [electronic resource] / Stanis�aw Sieniutycz, Jacek Je�zowski.

By: Sieniutycz, StanislawContributor(s): Je�zowski, JacekMaterial type: TextTextPublisher: Amsterdam ; Boston ; London : Elsevier, 2009Edition: 1st edDescription: 1 online resource (xvii, 751 p.) : illISBN: 9780080914428 (electronic bk.); 008091442X (electronic bk.); 0080451411 (cloth); 9780080451411 (cloth)Subject(s): Production engineering -- Mathematical models | Power (Mechanics) -- Mathematical models | Mathematical optimization | TECHNOLOGY & ENGINEERING -- Industrial Technology | TECHNOLOGY & ENGINEERING -- Industrial Engineering | BUSINESS & ECONOMICS -- Production & Operations Management | Chemischer Prozess | Energieverbrauch | Prozessoptimierung | Mathematical optimization | Chemical process controlGenre/Form: Electronic books. | Electronic books.Additional physical formats: Print version:: Energy optimization in process systems.DDC classification: 658.5/1 LOC classification: TS176 | .S54 2009ebOther classification: VN 7300 Online resources: ScienceDirect
Contents:
Chapter 1. Brief review of static optimization methods -- Chapter 2. Dynamic optimization problems -- Chapter 3. Optimization of thermal engines and heat pumps at steady states -- Chapter 4. Hamiltonian optimization of imperfect cascades -- Chapter 5. Maximum power from solar energy -- Chapter 6. Hamilton-Jacobi-Bellman theory of energy systems -- Chapter 7. Numerical optimization in allocation, storage and recovery of thermal energy and resources -- Chapter 8. Optimal control of separation processes -- Chapter 9. Optimal decisions for chemical and electrochemical reactors -- Chapter 10. Energy limits and evolution in biological systems -- Chapter 11. Systems theory in thermal and chemical engineering -- Chapter 12. Heat integration within process integration -- Chapter 13. Maximum heat recovery and its consequences for process system design -- Chapter 14. Targeting and supertargeting in heat exchanger network (HEN) design -- Chapter 15. Minimum utility cost (MUC) target by optimization approaches -- Chapter 16. Minimum number of units (MNU) and minimum total surface area (MTA) targets -- Chapter 17. Simultaneous HEN targeting for total annual cost -- Chapter 18. Heat exchanger network synthesis -- Chapter 19. Heat exchanger network retrofit -- Chapter 20. Approaches to water network design.
Summary: Despite the vast research on energy optimization and process integration, there has to date been no synthesis linking these together. This book fills the gap, presenting optimization and integration in energy and process engineering. The content is based on the current literature and includes novel approaches developed by the authors. Various thermal and chemical systems (heat and mass exchangers, thermal and water networks, energy converters, recovery units, solar collectors, and separators) are considered. Thermodynamics, kinetics and economics are used to formulate and solve problems with constraints on process rates, equipment size, environmental parameters, and costs. Comprehensive coverage of dynamic optimization of energy conversion systems and separation units is provided along with suitable computational algorithms for deterministic and stochastic optimization approaches based on: nonlinear programming, dynamic programming, variational calculus, Hamilton-Jacobi-Bellman theory, Pontryagin's maximum principles, and special methods of process integration. Integration of heat energy and process water within a total site is shown to be a significant factor reducing production costs, in particular costs of utilities for the chemical industry. This integration involves systematic design and optimization of heat exchangers and water networks (HEN and WN). After presenting basic, insight-based Pinch Technology, systematic, optimization-based sequential and simultaneous approaches to design HEN and WN are described. Special consideration is given to the HEN design problem targeting stage, in view of its importance at various levels of system design. Selected, advanced methods for HEN synthesis and retrofit are presented. For WN design a novel approach based on stochastic optimization is described that accounts for both grassroot and revamp design scenarios. .Presents a unique synthesis of energy optimization and process integration that applies scientific information from thermodynamics, kinetics, and systems theory .Discusses engineering applications including power generation, resource upgrading, radiation conversion and chemical transformation, in static and dynamic systems .Clarifies how to identify thermal and chemical constraints and incorporate them into optimization models and solutions .Presents a unique synthesis of energy optimization and process integration that applies scientific information from thermodynamics, kinetics, and systems theory .Discusses engineering applications including power generation, resource upgrading, radiation conversion and chemical transformation, in static and dynamic systems .Clarifies how to identify thermal and chemical constraints and incorporate them into optimization models and solutions.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
No physical items for this record

Despite the vast research on energy optimization and process integration, there has to date been no synthesis linking these together. This book fills the gap, presenting optimization and integration in energy and process engineering. The content is based on the current literature and includes novel approaches developed by the authors. Various thermal and chemical systems (heat and mass exchangers, thermal and water networks, energy converters, recovery units, solar collectors, and separators) are considered. Thermodynamics, kinetics and economics are used to formulate and solve problems with constraints on process rates, equipment size, environmental parameters, and costs. Comprehensive coverage of dynamic optimization of energy conversion systems and separation units is provided along with suitable computational algorithms for deterministic and stochastic optimization approaches based on: nonlinear programming, dynamic programming, variational calculus, Hamilton-Jacobi-Bellman theory, Pontryagin's maximum principles, and special methods of process integration. Integration of heat energy and process water within a total site is shown to be a significant factor reducing production costs, in particular costs of utilities for the chemical industry. This integration involves systematic design and optimization of heat exchangers and water networks (HEN and WN). After presenting basic, insight-based Pinch Technology, systematic, optimization-based sequential and simultaneous approaches to design HEN and WN are described. Special consideration is given to the HEN design problem targeting stage, in view of its importance at various levels of system design. Selected, advanced methods for HEN synthesis and retrofit are presented. For WN design a novel approach based on stochastic optimization is described that accounts for both grassroot and revamp design scenarios. .Presents a unique synthesis of energy optimization and process integration that applies scientific information from thermodynamics, kinetics, and systems theory .Discusses engineering applications including power generation, resource upgrading, radiation conversion and chemical transformation, in static and dynamic systems .Clarifies how to identify thermal and chemical constraints and incorporate them into optimization models and solutions .Presents a unique synthesis of energy optimization and process integration that applies scientific information from thermodynamics, kinetics, and systems theory .Discusses engineering applications including power generation, resource upgrading, radiation conversion and chemical transformation, in static and dynamic systems .Clarifies how to identify thermal and chemical constraints and incorporate them into optimization models and solutions.

Chapter 1. Brief review of static optimization methods -- Chapter 2. Dynamic optimization problems -- Chapter 3. Optimization of thermal engines and heat pumps at steady states -- Chapter 4. Hamiltonian optimization of imperfect cascades -- Chapter 5. Maximum power from solar energy -- Chapter 6. Hamilton-Jacobi-Bellman theory of energy systems -- Chapter 7. Numerical optimization in allocation, storage and recovery of thermal energy and resources -- Chapter 8. Optimal control of separation processes -- Chapter 9. Optimal decisions for chemical and electrochemical reactors -- Chapter 10. Energy limits and evolution in biological systems -- Chapter 11. Systems theory in thermal and chemical engineering -- Chapter 12. Heat integration within process integration -- Chapter 13. Maximum heat recovery and its consequences for process system design -- Chapter 14. Targeting and supertargeting in heat exchanger network (HEN) design -- Chapter 15. Minimum utility cost (MUC) target by optimization approaches -- Chapter 16. Minimum number of units (MNU) and minimum total surface area (MTA) targets -- Chapter 17. Simultaneous HEN targeting for total annual cost -- Chapter 18. Heat exchanger network synthesis -- Chapter 19. Heat exchanger network retrofit -- Chapter 20. Approaches to water network design.

Includes bibliographical references (p. [659]-724) and index.

Description based on print version record.

There are no comments on this title.

to post a comment.


Implemented and Maintained by Biju Patnaik Central Library.
For any Suggestions/Query Contact to library or Email: library@nitrkl.ac.in OR bpcl-cir@nitrkl.ac.in. Ph:91+6612462103
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha