Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer [electronic resource] / by Ben Q. Li.

By: Li, Ben Q [author.]Contributor(s): SpringerLink (Online service)Material type: TextTextLanguage: English Series: Computational Fluid and Solid Mechanics: Publisher: London : Springer London, 2006Description: XVII, 578 p. 167 illus. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9781846282058Subject(s): Engineering | Chemical engineering | Mathematics | Physics | Thermodynamics | Hydraulic engineering | Engineering | Engineering Fluid Dynamics | Numerical and Computational Methods in Engineering | Mechanics, Fluids, Thermodynamics | Numerical and Computational Methods | Applications of Mathematics | Industrial Chemistry/Chemical EngineeringAdditional physical formats: Printed edition:: No titleDDC classification: 620.1064 LOC classification: TA357-359Online resources: Click here to access online
Contents:
Discontinuous Finite Element Procedures -- Shape Functions and Elemental Calculations -- Conduction Heat Transfer and Potential Flows -- Convection-dominated Problems -- Incompressible Flows -- Compressible Fluid Flows -- External Radiative Heat Transfer -- Radiative Transfer in Participating Media -- Free and Moving Boundary Problems -- Micro and Nanoscale Fluid Flow and Heat Transfer -- Fluid Flow and Heat Transfer in Electromagnetic Fields.
In: Springer eBooksSummary: The discontinuous finite element method (also known as the discontinuous Galerkin method) embodies the advantages of both finite element and finite difference methods. It can be used in convection-dominant applications while maintaining geometric flexibility and higher local approximations throught the use of higer-order elements. Element-by element connection propagates the effect of boundary conditions and the local formulation obviates the need for global matrix assembly. All of this adds up to a method which is not unduly memory-intensive and uniquely useful for working with computational dynamics, heat transfer and fluid flow calculations. Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer offers its readers a systematic and practical introduction to the discontinuous finite element method. It moves from a brief review of the fundamental laws and equations governing thermal and fluid systems, through a discussion of different approaches to the formulation of discontinuous finite element solutions for boundary and initial value problems, to their applicaton in a variety of thermal-system and fluid-related problems, including: • heat conduction problems; • convection-dominant problems; • computational compressible flows; • external radiation problems; • internal radiation and radiative transfer; • free- and moving-boundary problems; • micro- and nanoscale heat transfer and fluid flow; • thermal fluid flow under the influence of applied magnetic fields. Mesh generation and adaptivity, parellelization algorithms and a priori and a posteriori error analysis are also introduced and explained, rounding out a comprehensive review of the subject. Each chapter features worked examples and exercises illustrating situations ranging from simple benchmarks to practical engineering questions. This textbook is written to form the foundations of senior undergraduate and graduate learning and also provides scientists, applied mathematicians and research engineers with a thorough treatment of basic concepts, specific techniques and methods for the use of discontinuous Galerkin methods in computational fluid dynamics and heat transfer applications.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
No physical items for this record

Discontinuous Finite Element Procedures -- Shape Functions and Elemental Calculations -- Conduction Heat Transfer and Potential Flows -- Convection-dominated Problems -- Incompressible Flows -- Compressible Fluid Flows -- External Radiative Heat Transfer -- Radiative Transfer in Participating Media -- Free and Moving Boundary Problems -- Micro and Nanoscale Fluid Flow and Heat Transfer -- Fluid Flow and Heat Transfer in Electromagnetic Fields.

The discontinuous finite element method (also known as the discontinuous Galerkin method) embodies the advantages of both finite element and finite difference methods. It can be used in convection-dominant applications while maintaining geometric flexibility and higher local approximations throught the use of higer-order elements. Element-by element connection propagates the effect of boundary conditions and the local formulation obviates the need for global matrix assembly. All of this adds up to a method which is not unduly memory-intensive and uniquely useful for working with computational dynamics, heat transfer and fluid flow calculations. Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer offers its readers a systematic and practical introduction to the discontinuous finite element method. It moves from a brief review of the fundamental laws and equations governing thermal and fluid systems, through a discussion of different approaches to the formulation of discontinuous finite element solutions for boundary and initial value problems, to their applicaton in a variety of thermal-system and fluid-related problems, including: • heat conduction problems; • convection-dominant problems; • computational compressible flows; • external radiation problems; • internal radiation and radiative transfer; • free- and moving-boundary problems; • micro- and nanoscale heat transfer and fluid flow; • thermal fluid flow under the influence of applied magnetic fields. Mesh generation and adaptivity, parellelization algorithms and a priori and a posteriori error analysis are also introduced and explained, rounding out a comprehensive review of the subject. Each chapter features worked examples and exercises illustrating situations ranging from simple benchmarks to practical engineering questions. This textbook is written to form the foundations of senior undergraduate and graduate learning and also provides scientists, applied mathematicians and research engineers with a thorough treatment of basic concepts, specific techniques and methods for the use of discontinuous Galerkin methods in computational fluid dynamics and heat transfer applications.

There are no comments on this title.

to post a comment.


Implemented and Maintained by Biju Patnaik Central Library.
For any Suggestions/Query Contact to library or Email: library@nitrkl.ac.in OR bpcl-cir@nitrkl.ac.in. Ph:91+6612462103
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha