Entropy and Information Theory [electronic resource] / by Robert M. Gray.

By: Gray, Robert M [author.]Contributor(s): SpringerLink (Online service)Material type: TextTextLanguage: English Publisher: Boston, MA : Springer US, 2011Description: XXVII, 409p. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9781441979704Subject(s): Engineering | Coding theory | Distribution (Probability theory) | Telecommunication | Engineering | Signal, Image and Speech Processing | Communications Engineering, Networks | Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences | Probability Theory and Stochastic Processes | Coding and Information TheoryAdditional physical formats: Printed edition:: No titleDDC classification: 621.382 LOC classification: TK5102.9TA1637-1638TK7882.S65Online resources: Click here to access online
Contents:
Preface -- Introduction -- Information Sources -- Pair Processes: Channels, Codes, and Couplings -- Entropy -- The Entropy Ergodic Theorem -- Distortion and Approximation -- Distortion and Entropy -- Relative Entropy -- Information Rates -- Distortion vs. Rate -- Relative Entropy Rates -- Ergodic Theorems for Densities -- Source Coding Theorems -- Coding for Noisy Channels -- Bibliography -- References -- Index.
In: Springer eBooksSummary: This book is an updated version of the information theory classic, first published in 1990. About one-third of the book is devoted to Shannon source and channel coding theorems; the remainder addresses sources, channels, and codes and on information and distortion measures and their properties. New in this edition: Expanded treatment of stationary or sliding-block codes and their relations to traditional block codes Expanded discussion of results from ergodic theory relevant to information theory Expanded treatment of B-processes -- processes formed by stationary coding memoryless sources New material on trading off information and distortion, including the Marton inequality New material on the properties of optimal and asymptotically optimal source codes New material on the relationships of source coding and rate-constrained simulation or modeling of random processes Significant material not covered in other information theory texts includes stationary/sliding-block codes, a geometric view of information theory provided by process distance measures, and general Shannon coding theorems for asymptotic mean stationary sources, which may be neither ergodic nor stationary, and d-bar continuous channels.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
No physical items for this record

Preface -- Introduction -- Information Sources -- Pair Processes: Channels, Codes, and Couplings -- Entropy -- The Entropy Ergodic Theorem -- Distortion and Approximation -- Distortion and Entropy -- Relative Entropy -- Information Rates -- Distortion vs. Rate -- Relative Entropy Rates -- Ergodic Theorems for Densities -- Source Coding Theorems -- Coding for Noisy Channels -- Bibliography -- References -- Index.

This book is an updated version of the information theory classic, first published in 1990. About one-third of the book is devoted to Shannon source and channel coding theorems; the remainder addresses sources, channels, and codes and on information and distortion measures and their properties. New in this edition: Expanded treatment of stationary or sliding-block codes and their relations to traditional block codes Expanded discussion of results from ergodic theory relevant to information theory Expanded treatment of B-processes -- processes formed by stationary coding memoryless sources New material on trading off information and distortion, including the Marton inequality New material on the properties of optimal and asymptotically optimal source codes New material on the relationships of source coding and rate-constrained simulation or modeling of random processes Significant material not covered in other information theory texts includes stationary/sliding-block codes, a geometric view of information theory provided by process distance measures, and general Shannon coding theorems for asymptotic mean stationary sources, which may be neither ergodic nor stationary, and d-bar continuous channels.

There are no comments on this title.

to post a comment.


Implemented and Maintained by Biju Patnaik Central Library.
For any Suggestions/Query Contact to library or Email: library@nitrkl.ac.in OR bpcl-cir@nitrkl.ac.in. Ph:91+6612462103
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha